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We consider configuration graphs [1] consisting of N nodes with node
degrees ξ1, . . . , ξN being independent identically distributed random variables
following the power-law distribution (see e. g. [2]):

P{ξ = k} = k−τ − (k + 1)−τ , k = 1, 2, . . . , (1)

where τ > 1 is a parameter of the distribution (1) with the expectation equal
to the Riemann zeta function in τ : ζ(τ) and variance being infinite when
τ ∈ (1, 2) and finite when τ > 2.

Graph construction [1] starts by giving each node a certain degree in con-
formity with the distribution (1). Node degrees form stubs [2] (or semiedges)
incident to the node. Pairing all stubs equiprobably, we form graph edges.
Obviously, the total number of stubs in a graph has to be even. If not, we
add a stub to an equiprobably chosen node increasing its degree by 1 to form
the lacking edge. Obviously, configuration graphs may have loops, multiple
edges and cycles.

In this work we consider average distance in power-law configuration
graphs. Under a distance d(v, u) between a pair of graph nodes v and u
is understood a minimal number of edges (the shortest path) between these
nodes. The distance between two nodes lying in different connected com-
ponents is assumed to be ∞. Thus, the average distance in such graphs is
calculated as the average of all non-infinite distances between all pairs of
nodes:

dist =

∑
v ̸=u d(v, u)

k
,

where k is a number of d(v, u) ̸= ∞.
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The aim of the work was to find the dependencies of dist on the graph
size N and the parameter of node degree distribution τ for the power-law
configuration graphs. The study was performed using simulation methods
followed by statistical data processing. The Dijkstra’s algorithm [4] was used
to find the shortest path between a pair of graph nodes.

In [3] the author shows that for typical nodal distance in graphs d(v, u)
the following holds:

d(v, u) ∼ 2 ln lnN

| ln(τ − 1)|
, (2)

when 1 < τ < 2 and N → ∞. And if τ > 2 then

d(v, u) ∼ lnN

ln ν
(3)

for N → ∞, where ν = Eξ(ξ−1)
Eξ

for ν > 1. It is easy to show that in power-

law configuration graphs ν = 2ζ(τ−1)
ζ(τ)

− 2 and ν > 1 for 2 < τ ≤ τ ∗ where
τ ∗ = 2.81063 . . .

Therefore, an attempt was made to built regression relations in the fol-
lowing forms: dist = 2 ln lnN

| ln(τ−1)| + b1 on the interval 1.1 ≤ τ ≤ 1.99 and

dist = lnN

ln( 2ζ(τ−1)
ζ(τ)

−2)
+ b2 on the interval 2.01 ≤ τ ≤ 2.8. The sizes of the

simulated graphs varied from 10 to 7000 nodes 100 graph realizations were
generated for each pair (N, τ). The right bound of the first interval and the
left bound of the second one are explained by limitations in denominators.
Coefficients b1 and b2 were found using the least squares method. However,
not only the determination coefficients of the obtained models showed low
values (0.01 and 0.0005, respectively) but the models themselves also showed
poor fit with experimental data.

For this reason, other regression relations were made for the dependence
of average distance on N and τ , which we offer to use for power-law con-
figuration graphs that are smaller or equal to 7000 nodes (sizes lying in the
pre-asymptotic range):

dist =
(8.977− 6.154τ + 0.834τ 2) ln lnN

| ln(τ − 1)|
(4)

for 1.1 ≤ τ ≤ 1.99 and

dist =
(31, 706− 22, 076τ + 3, 841τ 2) lnN

ln
(

2ζ(τ−1)
ζ(τ)

− 2
) (5)
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for 2.01 ≤ τ ≤ 2.8 with the determination coefficients of 0.88 and 0.74,
respectively.

Thus, although the relations (2) and (3) hold for graphs where N → ∞
(asymptotic range) [3], our study shows that they do not work for the pre-
asymptotic range, where the relations (4) and (5) better represent the real
situation.
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