
On a simple Markov homogeneous random
search algorithm of an extremum

Alexey Tikhomirov∗

July 27, 2022

Abstract

A simple Markov homogeneous random search algorithm of an ex-
tremumis is presented. This algorithm allows solving a fairly wide
class of problems of finding the global extremum of an objective func-
tion with a high accuracy.

1 Introduction

Let the objective function f : Rd 7→ R take a minimum value at a single
point x∗. Let us consider the problem of finding the global minimum point
x∗ with a given accuracy ε > 0. One way to solve this problem is to use
random search algorithms for the extremum of a function (see [1]–[14]). Such
methods have long been successfully used in solving complex optimization
problems. Theoretical studies of the convergence rate of some Markov search
algorithms are given in [3], [10]–[13]. This work is a continuation of [10] and
is devoted to one simple but effective algorithm for a homogeneous Markov
monotone search for an extremum.

We will consider the space X = Rd as an optimization space with metric

ρ(x, y) = max
16n6d

|xn − yn|,

∗Yaroslav-the-Wise Novgorod State University, Veliky Novgorod, Russian Federation,
tikhomirov.as@mail.ru

1



where x = (x1, . . . , xd) and y = (y1, . . . , yd). A closed ball of radius r centered
at x is denoted by Br(x) = {y ∈ Rd : ρ∞(x, y) 6 r}.

The metric ρ∞ was chosen for reasons of simplicity of modeling the ran-
dom search under consideration. The simulation of the considered random
search is based on modeling uniform distributions in the balls. The ball in the
metric ρ∞ is a cube. Simulating a uniform distribution in a multidimensional
cube is simple, while it is rather difficult to model a uniform distribution in
a “regular” ball defined by the Euclidean metric.

To find the minimum point, we use a homogeneous Markov monotone
random search described in [14].

2 Choosing search parameters

It is important to note that the choice of search parameters can have a major
impact on the effectiveness of the random search method [3], [5], [7]. More-
over, many search algorithms contain a large number of heuristic parameters,
and it is very difficult for the user of such an algorithm to find “good” pa-
rameter values that are suitable for the optimized function. Here is a quote
from [7] related to the “very fast annealing method” proposed by L. Ingber:
“Among the drawbacks of this method is that it sometimes takes several
months to fine-tune it to solve a specific problem because a large number
of parameters”. Moreover, with the right selection of parameters, the “very
fast annealing method” can show very good results [6], [7].

The presented search has only three parameters. Positive numbers ν
and Γ determine the range of variation of the radii of the balls uniform
distributions in which formed a transition function of the random search (see
[14]). The third parameter is N — the number of search steps.

The value of ν can be chosen close to the required accuracy of the solution
to the problem when approximated by argument. The value of Γ can be
chosen close either to the assumed accuracy of the initial approximation
(the distance from the initial search point to the minimum point) or to the
diameter of the region under study in the optimization space. When choosing
Γ, one can use the upper bound.

It is desirable to take the number of search steps N large enough. When
solving a single task, you can, for example, complete a billion search steps,
even if the task is simple enough and can be solved much faster. Modern
personal computers may well perform such volumes of computations, at least

2



for not too complex objective functions.
In addition to the three search parameters, it is necessary to select the

starting point of the search. It is clear that the starting point is better located
closer to the point of global extremum.

The proposed search algorithm is largely free from insurmountable diffi-
culties in choosing parameters. In particular, in the numerical examples of
section 4, the minimal choosing of parameters was performed, consisting of
literally several attempts to run the program with different parameter values.

It should be noted that the simulation algorithm for the considered ran-
dom search is very simple (see [14]).

3 Estimation of the complexity of the inves-

tigated search

Theoretical results on the complexity of the studied search can be obtained
using the results of [10]. We use a random search to find the minimum
point x∗ with the given accuracy ε (approximation “by argument”). When
approximating by argument, we will be interested in getting the search into
the ball Bε(x∗).

We consider an analog of the considered random search from which the
condition for stopping the search is removed for a theoretical study of the
complexity of random search. Such an algorithm generates an infinite se-
quence of search points {ξk}∞k=0. Through

τε = min {k > 0 : ξk ∈ Bε(x∗)}

we can denote the moment the search first hits the ε-neighborhood of the
global minimum point. The distribution of the random variable τε gives us
quite complete information about the quality of the random search. Indeed,
when performing the τε steps of the search, the values of the objective func-
tion f are calculated τε + 1 times.

We consider one characteristic of the rate of convergence of a random
search. The complexity of a random search is determined through E τε (math-
ematical expectation of τε) and it makes sense the average number of search
steps before it reaches the set Bε(x∗).

Using the results of [10], one can obtain a theoretical estimate of the
complexity of the search under study. Let the objective function f be non-
degenerate (see [10]). We choose the value of ν close to the required accuracy

3



of the solution of the problem when approximating by argument (i.e., to the
value ε). As a value Γ, we will take the upper estimate of the distance
from the starting point of the search to the minimum point. Here, for a
more accurate statement of the presented results, it would be necessary to
introduce special concepts of [10]. Using the results of [10], we can show that
E τε = O

(
ln2 ε

)
.

For comparison, we can note that when using the simplest random search
(the so-called “blind search” [3], [5]) which uses a uniform distribution in a
pre-fixed area of the optimization space (and when optimizing non-degenerate
objective functions) E τε = O

(
1/εd

)
.

Thus, from a theoretical point of view, the studied search is fast (in the
sense that its laboriousness has a good order of dependence on ε).

4 Examples of using the investigated random

search

The program for numerical experiments is written in C# language. You can
download the program at www.novsu.ru/doc/study/tas1 from the “Ran-
dom search” folder. The program is available both in the form of an exe-
cutable file, and in the form of a project containing the source code of the
program and allowing the user to edit the program at their discretion.

The double numeric type, which provides an accuracy of 15–16 characters
is used for calculations in he the program. Let us note that this numerical
format limits the possible accuracy of the solution to the problem. Arguing
somewhat simplistically, we obtain the following conclusions. If the objective
function behaves approximately like a quadratic function in the vicinity of the
global minimum, then with approximation accuracy with an argument of the
order of 10−8 we obtain the approximation accuracy with respect to the value
of a function of the order of 10−16. If the minimum value of the objective
function belongs to the interval (1, 10), then the double numeric type, which
provides an accuracy of 15–16 digits, will not allow calculating the value
of the function with an accuracy above 10−16. Thus, the possible accuracy
of solving the problem will be of the order of 10−7 for approximation by
argument, and of order 10−14 for approximation of the value of the function.
Such accuracy, as a rule, is sufficient from a practical point of view. And
such accuracy of solving the problem can be obtained by using the random

4



search program in question when solving not too complicated optimization
problems. Of course, if the minimum value of the objective function is equal
to zero, and the minimum point is also at zero, then the problem can be
solved with much higher accuracy.

Here are some examples of using the presented program to solve optimiza-
tion problems. A personal computer with a processor Intel Core i5-4460S was
used for calculations.

4.1 Example 1

Let us use the example from [5]. The optimization space is X = R2, x =
(x1, x2),

f(x) = f(x1, x2) = x41 + x21 + x1x2 + x22.

The function f takes a minimum value at a single point x∗ = (0, 0) and
f(x∗) = 0. The starting point of the search is x = (1, 1) and f(x) = 4. The
number of search steps N is 104 here.

Algorithm B of the book [5] obtains the minimum value of the objective
function 2.7 × 10−6. Algorithm B corresponds to a homogeneous random
search using the normal probability distribution as a transition function.

Algorithm C of the book [5] obtains the minimum value of the objective
function 2.5×10−7. Algorithm C also uses the normal probability distribution
as a transition function, but is a more complex search option, in which, when
constructing a new search point, the displacement made in the previous step
of the algorithm is taken into account.

The considered random search with the parameters ν = 2 × 10−24 and
Γ = 0.7 receives the minimum value of the objective function 1.7× 10−51.

In this example, the considered random search turned out to be much
more accurate than the algorithms B and C of the book [5], using the normal
probability distribution.

The considered random search with the parameters ν = 10−165, Γ = 0.7,
and N = 106 obtains the minimum value of the objective function equal
to zero (i.e., less than the value 5 × 10−324, defining a range of values of
the type double of the C# programming language) and the minimum point
(−6.8× 10−163, 1.7× 10−162). Let us note that in this case the maximum
accuracy with which calculations in C# can be performed using the number
format double (due to the fact that it is impossible to more accurately cal-
culate the value of the objective function). The search execution time was

5



0.047 seconds.

4.2 Example 2

The optimization space here is X = [−8, 8]2, x = (x1, x2),

f(x) = f(x1, x2) =
1

2

(
(x41 − 16x21 + 5x1) + (x42 − 16x22 + 5x2)

)
.

The function f has four local minima, one of which is global. The starting
point of the search is x = (4.0, 6.4) and f(x) = 537.18. The considered ran-
dom search with parameters ν = 10−8, Γ = 10, and N = 20000 finds the
minimum value of the objective function −78.3323314075428 and the mini-
mum point (−2.903534,−2.903534). Let us note that the extreme accuracy
has been achieved with which you can perform calculations in C# using the
double number format (due to the fact that it is impossible to calculate the
value of the objective function more accurately).

4.3 Example 3

The space here is X = [−4, 4]10, x = (x1, x2, . . . , x10),

f(x) = f(x1, x2, . . . , x10) =
5∑

n=1

(
100(x2n − x22n−1)2 + (1− x2n−1)2

)
.

The f function is a well-known Rosenbrock test function used for local op-
timization methods. The function f takes the minimum value f(x∗) = 0
at the point x∗ = (1, 1, . . . , 1). The starting point of the search is x =
(−1.2, 1,−1.2, 1, . . . , 1) and f(x) = 121. The considered random search with
parameters ν = 10−17, Γ = 4, and N = 107 finds the minimum value of the
objective function 2.7× 10−29. The search time was 1.6 seconds.

4.4 Example 4

Consider an example with a very simple objective function, but in a very
large dimension optimization space for random search methods. Here the
space X = R1000, x = (x1, x2, . . . , x1000),

f(x) = f(x1, x2, . . . , x1000) =
1000∑
n=1

x2n.

6



The function f takes the minimum value f(x∗) = 0 at a single point. The
starting point of the search is x = (1, 1, . . . , 1). The considered random
search with parameters ν = 10−10, Γ = 10, and N = 106 finds the minimum
value of the objective function 1.5× 10−14. Search time was 13 seconds.

5 Conclusion

The results obtained show that the presented very simple homogeneous ran-
dom search algorithm is quite effective. The presented random search can
be successfully used to solve optimization problems. The algorithm itself is
easy to use, and choosing search parameters is not a difficult task. At the
same time, the program allows solving problems with the utmost accuracy
that can be obtained using the double number format of the programming
language C#.

References

[1] Ermakov S M and Zhiglyavsky A A 1983 On a random search for a
global extremum Probability Theory and its Applications 1 129–136

[2] Ermakov S M, Zhiglyavsky A A and Kondratovich M V 1989 Com-
parison of some procedures for random search of a global extremum
Journal of Computational Mathematics and Mathematical Physics Vol
29 2 163–170

[3] Zhigljavsky A and Zilinskas A 2008 Stochastic global optimization
(Berlin: Springer-Verlag)

[4] Zhigljavsky A and Zilinskas A 2016 Stochastic global optimization: a
review on the occasion of 25 years of Informatica Informatica Vol 27 2
229–256

[5] Spall J C 2003 Introduction to stochastic search and optimization: esti-
mation, simulation, and control (New Jersey: Wiley)

[6] Ingber L 1989 Very fast simulated re-annealing Mathl. Comput. Mod-
elling Vol 12 967–973

7



[7] Lopatin A S 2005 Annealing method, Stochastic optimization in com-
puter science Vol. 1 133–149

[8] Granichin O N and Polyak B T 2003 Randomized estimation and opti-
mization algorithms with almost arbitrary noise (Moscow: Nauka)

[9] Sushkov Yu A 1972 On one method of organizing a random search,
Research of operations and statistics modeling (Leningrad: Publishing
House of Leningrad State University) 1 180–186

[10] Nekrutkin V V and Tikhomirov A S 1993 Speed of convergence as a
function of given accuracy for random search methods Acta Applicandae
Mathematicae 33 89–108

[11] Tikhomirov A S 2006 On the Markov homogeneous optimization method
Computational Mathematics and Mathematical Physics Vol. 46 3 361–
375

[12] Tikhomirov A S 2007 On the convergence rate of the Markov homoge-
neous monotone optimization method Computational Mathematics and
Mathematical Physics Vol. 47 5 780–790

[13] Tikhomirov A, Stojunina T and Nekrutkin V 2007 Monotonous random
search on a torus: integral upper bounds for the complexity Journal of
Statistical Planning and Inference Vol. 137 12 4031–4047

[14] Tikhomirov A S 2020 On the program implementation of a simple
Markov homogeneous random search algorithm of an extremum Journal
of Physics: Conference Series Vol. 1658 012058 1–8.

8


